H-Convergence

François Murat and Luc Tartar

Foreword to the English Translation

The article is the translation of notes originally written in French that were intended as a first draft for a joint book which has yet to be written. These notes presented part of the material that Luc Tartar taught in his *Cours Peccot* at the Collège de France in March 1977 and were also based on a series of lectures given by François Murat at Algiers University in March 1978. They were subsequently reproduced by mimeograph in the *Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger 1977/78* under the signature of only François Murat. We have chosen to return to our original project by cosigning the present translation.

We would like to note that a small change in the definition of the set $M(\alpha, \beta, \Omega)$, which is introduced and used in the following, would result in an improvement of the presentation of these notes. Indeed, define $M'(\alpha, \gamma, \Omega)$ as the set of those matrices $A \in [L^{\infty}(\Omega)]^{N^2}$ which are such that $(A(x)\lambda, \lambda) \ge \alpha \mid \lambda \mid^2$ and $((A)^{-1}(x)\lambda, \lambda) \ge \gamma \mid \lambda \mid^2$ for any λ in \mathbb{R}^N and a.e. x in Ω . A proof similar to that presented hereafter implies that the *H*-limit of a sequence of matrices of $M'(\alpha, \gamma, \Omega)$ also belongs to $M'(\alpha, \gamma, \Omega)$, whereas the *H*-limit of a sequence of matrices are not symmetric.

1 Notation

 Ω is an open subset of \mathbb{R}^N . $\omega \subset \subset \Omega$ denotes a bounded open subset ω of Ω such that $\overline{\omega} \subset \Omega$. $\alpha, \beta, \alpha', \beta'$ are strictly positive real numbers satisfying

$$0<\alpha<\beta<+\infty$$

$$0 < \alpha' < \beta' < +\infty.$$

 (\cdot, \cdot) and $|\cdot|$ respectively denote the euclidean inner product and norm on $\mathbf{R}^N.$

 (e_1, \ldots, e_N) is the canonical basis of \mathbb{R}^N . $E = \{\epsilon = 1/n : n \in \mathbb{Z}^+ - \{0\}\}.$ E', E'', \ldots are infinite subsets of E (subsequences).

$$M(\alpha, \beta, \Omega) = \{ A \in [L^{\infty}(\Omega)]^{N^2} : (A(x)\lambda, \lambda) \ge \alpha \mid \lambda \mid^2, \mid A(x)\lambda \mid \le \beta \mid \lambda \mid$$
for any $\lambda \in \mathbf{R}^N$ and a.e. x in $\Omega \}.$

A. Cherkaev et al. (eds.), *Topics in Mathematic Modelling of Composite Materials* © Birkhäuser Boston 1997 If A is an element of $M(\alpha, \beta, \Omega)$ and u is an element of $H_0^1(\Omega)(=W_0^{1,2}(\Omega))$,

$$-div \left(A \operatorname{grad} u\right) = -\sum_{i=1}^{N} \frac{\partial}{\partial x_i} \left(\sum_{j=1}^{N} A_{ij} \frac{\partial u}{\partial x_j}\right).$$

2 Introductory Remarks

Let $A^{\epsilon}, \epsilon \in E$, be a sequence of elements of $M(\alpha, \beta, \Omega)$. Then, for any ϵ , any bounded open set Ω , and any f in $H^{-1}(\Omega)$, there exists a unique solution of

$$\begin{cases} -div \left(A^{\epsilon} grad \, u^{\epsilon}\right) = f & \text{ in } \Omega, \\ u^{\epsilon} \in H^{1}_{0}(\Omega). \end{cases}$$

Furthermore one has

$$\alpha \parallel u^{\epsilon} \parallel_{H^{1}_{0}(\Omega)} \leq \parallel f \parallel_{H^{-1}(\Omega)} +$$

which implies the existence of a subsequence E' such that, for ϵ in E',

$$u^{\epsilon} \rightarrow u^0$$
 weakly in $H_0^1(\Omega)$.

The following question is raised: does u^0 satisfy an equation of the same type as that satisfied by u^{ϵ} ?

Whenever the matrices A^{ϵ} converge almost everywhere to a matrix A^{0} , A^{ϵ} converges to A^{0} in $[L^{p}(\Omega)]^{N^{2}}$ for any finite p, and the weak limit of $A^{\epsilon}grad u^{\epsilon}$ in $[L^{2}(\Omega)]^{N}$ is $A^{0}grad u^{0}$ (for ϵ in E'). Therefore u^{0} is the solution of

$$\begin{cases} -div \left(A^0 grad \, u^0\right) = f & \text{in } \Omega, \\ u^0 \in H^1_0(\Omega). \end{cases}$$

Note that the uniqueness of u^0 is ensured because the pointwise limit A^{ϵ} of A^0 belongs to $M(\alpha, \beta, \Omega)$.

In the absence of pointwise convergence of the matrices A^{ϵ} the setting is drastically different, as illustrated by the one-dimensional case.

3 The One-Dimensional Case

Set $\Omega = (0,1)$, take f in $L^2(\Omega)$ and A^{ϵ} in $M(\alpha, \beta, \Omega)$, which is here just $M(\alpha, \beta, \Omega) = \{A^{\epsilon} \in L^{\infty}(\Omega) : \alpha \leq A^{\epsilon}(x) \leq \beta \text{ a.e. in } \Omega\}.$

Define u^{ϵ} as the unique solution of

$$\begin{cases} -\frac{d}{dx}(A^{\epsilon}\frac{du^{\epsilon}}{dx}) = f & \text{in } \Omega, \\ u^{\epsilon} \in H^{1}_{0}(\Omega). \end{cases}$$

Since $\alpha \parallel u^{\epsilon} \parallel_{H_0^1(\Omega)} \leq \parallel f \parallel_{H^{-1}(\Omega)}$, a subsequence E' of E is such that

$$u^{\epsilon} \rightarrow u^{0}$$
 weakly in $H^{1}_{0}(\Omega)$, $\epsilon \in E'$.

Set $\xi^{\epsilon} = A^{\epsilon} \frac{du^{\epsilon}}{dx}$. The function ξ^{ϵ} is bounded in $H^{1}(\Omega)$ because

$$\|\xi^{\epsilon}\|_{L^{2}(\Omega)} \leq \frac{\beta}{\alpha} \|f\|_{H^{-1}(\Omega)} \quad \text{and} \quad \frac{d\xi^{\epsilon}}{dx} = -f \quad \text{in } \Omega.$$

Hence a subsequence E'' of E' is such that

$$\xi^{\epsilon} \to \xi^0$$
 strongly in $L^2(\Omega), \ \epsilon \in E''.$

Since A^{ϵ} belongs to $M(\alpha, \beta, \Omega)$,

$$rac{1}{eta} \leq rac{1}{A^\epsilon(x)} \leq rac{1}{lpha} \quad ext{a.e. in } \Omega,$$

and a subsequence E''' of E is such that

$$\frac{1}{A^{\epsilon}} \rightharpoonup \frac{1}{A^0} \quad \text{weak-* in } L^{\infty}(\Omega), \epsilon \in E'''.$$

Furthermore A^0 belongs to $M(\alpha, \beta, \Omega)$.

The limit of each side of the equality

$$\frac{1}{A^\epsilon}\xi^\epsilon = \frac{du^\epsilon}{dx}, \ \epsilon \in E^{\prime\prime\prime} \ ,$$

is computable and it yields

$$\frac{1}{A^0}\xi^0 = \frac{du^0}{dx}.$$

Since $\frac{d\xi^0}{dx} = -f$, u^0 is a solution of

$$\begin{cases} -\frac{d}{dx}(A^0\frac{du^0}{dx}) = f & \text{in } \Omega, \\ u^0 \in H^1_0(\Omega), \end{cases}$$

and it is unique because A^0 belongs to $M(\alpha, \beta, \Omega)$.

Note that if B^0 is the weak-* limit in $L^{\infty}(\Omega)$ of A^{ϵ} for a subsequence E'''' of E''', then A^0 is generally different from B^0 as easily seen upon consideration of the following example:

$$\left\{ \begin{array}{ll} A^{\epsilon}(x)=\alpha &, \quad k\epsilon \leq x < (k+\frac{1}{2})\epsilon, \\ A^{\epsilon}(x)=\beta &, \quad (k+\frac{1}{2})\epsilon \leq x < (k+1)\epsilon, \end{array} \right.$$

with $k \in \mathbf{Z}^+$, in which case

$$\begin{cases} \frac{1}{A^0} = \frac{1}{2}(\frac{1}{\alpha} + \frac{1}{\beta}),\\ B^0 = \frac{1}{2}(\alpha + \beta). \end{cases}$$

The reader should, however, refrain from drawing the hasty conclusion that weak-* convergence in $[L^{\infty}(\Omega)]^{N^2}$ of the inverse matrices $(A^{\epsilon})^{-1}$ of A^{ϵ} is the key to the understanding of the problem in the *N*-dimensional case. Consider, for example, the following setting.

4 Layering

A sequence $A^{\epsilon}, \epsilon \in E$, of elements of $M(\alpha, \beta, \Omega)$ such that $A^{\epsilon}(x) = A^{\epsilon}(x_1)$ is investigated. Since it satisfies

$$A_{11}^{\epsilon}(x) = (A^{\epsilon}(x)e_1, e_1) \ge \alpha \mid e_1 \mid^2 = \alpha,$$

a subsequence E' of E is such that

$$\begin{cases} \frac{1}{A_{11}^{\epsilon}} \rightarrow \frac{1}{A_{11}^{0}}, \\ \frac{A_{i1}^{\epsilon}}{A_{11}^{\epsilon}} \rightarrow \frac{A_{i1}^{0}}{A_{11}^{0}}, \quad i > 1, \\ \frac{A_{ij}^{\epsilon}}{A_{11}^{\epsilon}} \rightarrow \frac{A_{ij}^{0}}{A_{11}^{0}}, \quad j > 1, \\ A_{ij}^{\epsilon} - \frac{A_{i1}^{\epsilon}A_{1j}^{\epsilon}}{A_{11}^{\epsilon}} \rightarrow A_{ij}^{0} - \frac{A_{i1}^{0}A_{1j}^{0}}{A_{11}^{0}}, \quad i > 1, j > 1, \end{cases}$$
(1)

for $\epsilon \in E'$. The convergences in equation (1) are to be understood as weak-* convergences in $L^{\infty}(\Omega)$.

If Ω is bounded and f is an element of $L^2(\Omega)$, the solution u^{ϵ} of

$$\begin{cases} -div \left(A^{\epsilon} grad \, u^{\epsilon}\right) = f & \text{ in } \Omega, \\ \\ u^{\epsilon} \in H^{1}_{0}(\Omega) , \end{cases}$$

is such that, for a subsequence E'' of E',

$$u^{\epsilon}
ightarrow u^{0}$$
 weakly in $H_{0}^{1}(\Omega)$, $\epsilon \in E''$.

Let us prove that u^0 is the solution of

$$\begin{cases} -div \left(A^{0} grad u^{0}\right) = f & \text{ in } \Omega, \\ u^{0} \in H_{0}^{1}(\Omega) , \end{cases}$$

$$(2)$$

with A^0 defined through (1).

Let $\omega = \prod_{i=1}^{N} (a_i, b_i)$ be a rectangle such that $\omega \subset \Omega$. Set $\omega' = \prod_{i=2}^{N} (a_i, b_i)$ and

$$\xi_i^{\epsilon} = \sum_{j=1}^N A_{ij}^{\epsilon} \frac{\partial u^{\epsilon}}{\partial x_j}, \quad 1 \le i \le N.$$

Each of the ξ_i^{ϵ} 's is bounded in $L^2(\omega)$ and

$$-rac{\partial \xi_1^\epsilon}{\partial x_1} = f + \sum_{i=2}^N rac{\partial \xi_i^\epsilon}{\partial x_i} \; .$$

Thus ξ_1^ϵ is bounded in $H^1((a_1,b_1);H^{-1}(\omega'))$.

The identity mapping from $L^2(\omega')$ into $H^{-1}(\omega')$ is compact, which implies, by virtue of Aubin's compactness lemma, that

$$\Xi = \{\xi \in L^2((a_1, b_1)); L^2(\omega')) : \frac{\partial \xi}{\partial x_1} \in L^2((a_1, b_1)); H^{-1}(\omega'))\}$$

is compactly embedded in $L^2((a_1, b_1); H^{-1}(\omega'))$. Thus, at the expense of extracting a subsequence E''' of E'', we are at liberty to assume that

$$\begin{cases} \xi_i^{\epsilon} \to \xi_i^0 & \text{weakly in } L^2(\omega) ,\\ \\ \xi_1^{\epsilon} \to \xi_1^0 & \text{strongly in } L^2((a_1, b_1)); H^{-1}(\omega')) ,\\ \\ u^{\epsilon} \to u^0 & \text{strongly in } L^2(\omega) , \end{cases}$$
(3)

for ϵ in E'''.

But A_{ij}^{ϵ} is a function of x_1 and only x_1 , thus

$$\begin{split} \frac{\partial u^{\epsilon}}{\partial x_1} + \sum_{j=2}^N \frac{\partial}{\partial x_j} (\frac{A_{1j}^{\epsilon}}{A_{11}^{\epsilon}} u^{\epsilon}) &= \frac{1}{A_{11}^{\epsilon}} \xi_1^{\epsilon}, \\ \xi_i^{\epsilon} &= \frac{A_{i1}^{\epsilon}}{A_{11}^{\epsilon}} \xi_1^{\epsilon} + \sum_{j=2}^N \frac{\partial}{\partial x_j} ((A_{ij}^{\epsilon} - \frac{A_{i1}^{\epsilon} A_{1j}^{\epsilon}}{A_{11}^{\epsilon}}) u^{\epsilon}), \quad i > 1. \end{split}$$

The limit of every single term in the preceding equalities is immediately computable upon recalling equations (1) and (3). For example, if φ is an arbitrary element of $C_0^{\infty}(\omega)$,

$$\int_{\omega} \frac{1}{A_{11}^{\epsilon}} \xi_1^{\epsilon} \varphi dx = <\xi_1^{\epsilon}, \frac{1}{A_{11}^{\epsilon}} \varphi >,$$

where \langle , \rangle stands for the duality bracket between $L^2((a_1, b_1); H^{-1}(\omega'))$ and $L^2((a_1, b_1); H^1_0(\omega'))$. We finally obtain

$$\xi_i^0 = \sum_{j=1}^N A_{ij}^0 \ \frac{\partial u^0}{\partial x_j}, \quad i \ge 1,$$

which yields equation (2) because $-div \, \xi^0 = f$ in ω , and $\omega \subset \Omega$ is arbitrary.

5 Definition of the *H*-Convergence

Definition 1 A sequence $A^{\epsilon}, \epsilon \in E$, of elements of $M(\alpha, \beta, \Omega)$ H-converges to an element A^{0} of $M(\alpha', \beta', \Omega)$ $(A^{\epsilon} \xrightarrow{H} A^{0})$ if and only if, for any $\omega \subset \subset \Omega$ and any f in $H^{-1}(\omega)$, the solution u^{ϵ} of

$$\begin{cases} -div \left(A^{\epsilon} grad \, u^{\epsilon}\right) = f \quad in \ \omega, \\ u^{\epsilon} \in H_0^1(\omega) , \end{cases}$$

$$\tag{4}$$

is such that

$$\begin{cases} u^{\epsilon} \rightarrow u^{0} \quad weakly \ in \ H_{0}^{1}(\omega) \ , \\ A^{\epsilon}grad \ u^{\epsilon} \rightarrow A^{0}grad \ u^{0} \quad weakly \ in \ [L^{2}(\omega)]^{N} \ , \end{cases}$$
(5)

for $\epsilon \in E$, where u^0 is the solution of

$$\left\{ \begin{array}{ll} -div\,(A^0grad\,u^0)=f & \ in\,\,\omega\;,\\ \\ u^0\in H^1_0(\omega). \end{array} \right.$$

Remarks

- 1. According to the results obtained in Sections 2, 3, and 4, the following results hold true:
 - (i) If A^{ϵ} converges to A^{0} a.e. in Ω , then $A^{\epsilon} \stackrel{H}{\rightharpoonup} A^{0}$.
 - (ii) If N = 1, $A^{\epsilon} \stackrel{H}{\longrightarrow} A^{0}$ if and only if $\frac{1}{A^{\epsilon}} \rightarrow \frac{1}{A^{0}}$ weak-* in $L^{\infty}(\Omega)$, as easily seen upon approximation in $H^{-1}(\Omega)$ of f by functions of $L^{2}(\Omega)$ (see Section 3).
 - (iii) If $A^{\epsilon}(x) = A^{\epsilon}(x_1)$, and if $A^{\epsilon} \stackrel{H}{\longrightarrow} A^0$, equation (1) is satisfied. Conversely if (1) is satisfied, then it can be shown that A^0 is coercive and Section 4 implies that $A^{\epsilon} \stackrel{H}{\longrightarrow} A^0$.

H-Convergence

- 2. If equation (4) is interpreted as the equation for the electrostatic potential u^{ϵ} , A^{ϵ} as the tensor of dielectric permittivity, $E^{\epsilon} = grad u^{\epsilon}$ as the electric field, and $D^{\epsilon} = A^{\epsilon}grad u^{\epsilon}$ as the polarization field, then convergence (5) is a statement about the weak convergence of the fields E^{ϵ} and D^{ϵ} . It is shown later on that the electrostatic energy $e^{\epsilon} = (D^{\epsilon}, E^{\epsilon}) = (A^{\epsilon}grad u^{\epsilon}, grad u^{\epsilon})$ is also a weakly converging quantity.
- 3. The concept of *H*-convergence generalizes that of *G* convergence introduced by Spagnolo (see, for example, Spagnolo [5] and De Giorgi and Spagnolo [2]). Furthermore, the theory of periodic homogenization, as developed in A. Bensoussan et al. [1], may be construed as a systematic study of the *H*-convergence in a periodic framework. The latter reference offers a thorough bibliography as well as a wealth of open problems.

6 Locality

In essence, *H*-convergence amounts to a statement of convergence of the inverse operators $[-div (A^{\epsilon}grad)]^{-1}$, which are bounded linear mappings from $H^{-1}(\Omega)$ into $H_0^1(\Omega)$, when both spaces $H^{-1}(\Omega)$ and $H_0^1(\Omega)$ are endowed with their weak topologies. The underlying topology satisfies the property of uniqueness of the *H*-limit, and the *H*-limit is local as demonstrated in the following proposition:

Proposition 1 (i) A sequence A^{ϵ} , $\epsilon \in E$, of elements of $M(\alpha, \beta, \Omega)$ has at most one *H*-limit.

(ii) Let A^{ϵ} and $B^{\epsilon}, \epsilon \in E$, be two sequences in $M(\alpha, \beta, \Omega)$ that satisfy

$$\left\{ \begin{array}{c} A^{\epsilon} \xrightarrow{H} A^{0} , \\ \\ B^{\epsilon} \xrightarrow{H} B^{0} . \end{array} \right.$$

and are such that $A^{\epsilon} = B^{\epsilon}$ on an open set $\omega \subset \Omega$. Then $A^{0} = B^{0}$ on ω .

Proof:

Let A^0 be an *H*-limit of $A^{\epsilon}, \epsilon \in E$. Consider $\omega \subset \omega_1 \subset \Omega, \varphi \in \mathcal{C}_0^{\infty}(\omega_1)$ with $\varphi = 1$ on ω , and define, for any λ in \mathbb{R}^N ,

$$f_{\lambda} = -div \left(A^{0}(x)grad\left((\lambda, x)\varphi(x)\right)\right).$$

Then u_{λ}^{ϵ} , defined as the solution of

$$\begin{cases} -div \left(A^{\epsilon} grad \, u_{\lambda}^{\epsilon}\right) = f_{\lambda} & \text{ in } \omega_{1}, \\ \\ u_{\lambda}^{\epsilon} \in H_{0}^{1}(\omega_{1}) , \end{cases}$$

for $\epsilon \in E$ and $\epsilon = 0$, is such that

4

$$\left\{ \begin{array}{ll} u_{\lambda}^{0}(x) = (\lambda, x)\varphi(x), \\ \\ u_{\lambda}^{\epsilon} \rightarrow u_{\lambda}^{0} \quad \text{weakly in } H_{0}^{1}(\omega_{1}), \\ \\ A^{\epsilon}grad\, u_{\lambda}^{\epsilon} \rightarrow A^{0}grad\, u_{\lambda}^{0} \quad \text{weakly in } [L^{2}(\omega_{1})]^{N}. \end{array} \right.$$

If B^0 is another *H*-limit for A^{ϵ} , then

$$A^{\epsilon} grad \, u_{\lambda}^{\epsilon} \rightarrow B^{0} grad \, u_{\lambda}^{0} \quad \text{weakly in } [L^{2}(\omega_{1})]^{N}.$$

Thus $A^0 \operatorname{grad} u_{\lambda}^0 = B^0 \operatorname{grad} u_{\lambda}^0$ and, since $\operatorname{grad} u_{\lambda}^0 = \lambda$ in ω , $A^0 = B^0$ in ω , which proves (i). The proof of (ii) is immediate in view of (i) together with the definition of *H*-convergence.

7 Two Fundamental Lemmata

Lemma 1 Let Ω be an open subset of \mathbf{R}^N and $\xi^{\epsilon}, v^{\epsilon}, \epsilon \in E$, be such that

$$\begin{cases} \xi^{\epsilon} \in [L^{2}(\Omega)]^{N}, \\ \xi^{\epsilon} \to \xi^{0} \quad weakly \ in \ [L^{2}(\Omega)]^{N}, \\ div \ \xi^{\epsilon} \to div \ \xi^{0} \quad strongly \ in \ H^{-1}(\Omega), \\ \\ \begin{cases} v^{\epsilon} \in H^{1}(\Omega), \\ v^{\epsilon} \to v^{0} \quad weakly \ in \ H^{1}(\Omega). \end{cases}$$

Then

$$(\xi^{\epsilon}, \operatorname{grad} v^{\epsilon}) \rightarrow (\xi^0, \operatorname{grad} v^0) \quad \operatorname{weakly-}^* \operatorname{in} \mathcal{D}'(\Omega).$$

Remarks

- 1. The product $(\xi^{\epsilon}, grad v^{\epsilon})$ is that of two weakly and not strongly converging sequences; thus it is a miracle that the limit of the product should be equal to the product of the limits. This phenomenon is known as compensated compactness (see Murat [4] and Tartar [7]).
- 2. The product $(\xi^{\epsilon}, \operatorname{grad} v^{\epsilon})$ is bounded in $L^{1}(\Omega)$ independently of ϵ . Thus it actually converges vaguely to a measure. However, it does not in general converge weakly in $L^{1}(\Omega)$ (see Murat [6] for a counterexample).

Proof of Lemma 1:

Let φ be an element of $\mathcal{C}_0^{\infty}(\Omega)$. Then

$$\int_{\Omega} (\xi^{\epsilon}, \operatorname{grad} v^{\epsilon}) \varphi dx = - \langle \operatorname{div} \xi^{\epsilon}, \varphi v^{\epsilon} \rangle_{H^{-1}(\Omega), H^{1}_{0}(\Omega)} - \int_{\Omega} (\xi^{\epsilon}, \operatorname{grad} \varphi) v^{\epsilon} dx.$$

Passing to the limit in each term of the right-hand side is easy (use Rellich's theorem in the second term). Integration by parts of the resulting expression yields the desired result.

Lemma 2 Let Ω be an open subset of \mathbb{R}^N . Let A^{ϵ} belong to $M(\alpha, \beta, \Omega)$ for $\epsilon \in E$. Assume that, for $\epsilon \in E$,

$$\begin{cases} u^{\epsilon} \in H^{1}(\Omega), \\ u^{\epsilon} \to u^{0} \quad weakly \ in \ H^{1}(\Omega), \\ \xi^{\epsilon} = A^{\epsilon} grad \ u^{\epsilon} \to \xi^{0} \quad weakly \ in \ [L^{2}(\Omega)]^{N}, \\ -div \left(A^{\epsilon} grad \ u^{\epsilon}\right) \to -div \ \xi^{0} \quad strongly \ in \ H^{-1}(\Omega), \end{cases}$$

$$\begin{cases} v^{\epsilon} \in H^{1}(\Omega), \\ v^{\epsilon} \to v^{0} \quad weakly \ in \ H^{1}(\Omega), \\ \eta^{\epsilon} = \ ^{t}A^{\epsilon} grad \ v^{\epsilon} \to \eta^{0} \quad weakly \ in \ [L^{2}(\Omega)]^{N}, \\ -div \left(\ ^{t}A^{\epsilon} grad \ v^{\epsilon}\right) \to -div \ \eta^{0} \quad strongly \ in \ H^{-1}(\Omega). \end{cases}$$

$$(6)$$

Then

$$(\xi^0, \operatorname{grad} v^0) = (\operatorname{grad} u^0, \eta^0) \quad a.e. \text{ in } \Omega.$$
(8)

Proof:

The proof is immediate upon observing that

$$(\xi^{\epsilon}, \operatorname{grad} v^{\epsilon}) = (A^{\epsilon} \operatorname{grad} u^{\epsilon}, \operatorname{grad} v^{\epsilon}) = (\operatorname{grad} u^{\epsilon}, {}^{t}A^{\epsilon} \operatorname{grad} v^{\epsilon}) = (\operatorname{grad} u^{\epsilon}, \eta^{\epsilon}),$$

and through application of Lemma 1.

Note that equality (8) is a pointwise equality, which is a much stronger statement than an integral equality.

8 Irrelevance of the Boundary Conditions. Convergence of the Energy

Proposition 2 If $A^{\epsilon}, \epsilon \in E$, belongs to $M(\alpha, \beta, \Omega)$ and H-converges to A^{0} which belongs to $M(\alpha', \beta', \Omega)$, then ${}^{t}A^{\epsilon}, \epsilon \in E$, H-converges to ${}^{t}A^{0}$.

Proof:

Let $\omega \subset \subset \Omega$ and g be an element of $H^1(\omega)$. Let v^{ϵ} be the solution of

$$\begin{cases} -div \left({}^{t}A^{\epsilon}grad \, v^{\epsilon}\right) = g & \text{ in } \omega, \\ v^{\epsilon} \in H^{1}_{0}(\omega) , \end{cases}$$

for $\epsilon \in E$. Our task is to show that

$$\left\{ \begin{array}{ll} v^{\epsilon} \rightharpoonup v^{0} & \mathrm{weakly \ in} \ H^{1}_{0}(\omega), \\ \\ {}^{t}A^{\epsilon}grad \, v^{\epsilon} \rightharpoonup {}^{t}A^{0}grad \, v^{0} & \mathrm{weakly \ in} \ [L^{2}(\omega)]^{N} \ , \end{array} \right.$$

for $\epsilon \in E$, where v^0 is the solution of

$$\begin{cases} -div \left({}^{t}A^{0}grad \, v^{0} \right) = g & \text{ in } \omega, \\ \\ v^{0} \in H^{1}_{0}(\omega) \; . \end{cases}$$

Because $v^\epsilon,\epsilon\in E$ is bounded in $H^1_0(\omega),$ a subsequence E' of E is such that

$$\left\{ \begin{array}{ll} v^\epsilon \rightharpoonup v & {\rm weakly \ in \ } H^1_0(\omega), \\ \\ {}^tA^\epsilon grad \, v^\epsilon \rightharpoonup \eta & {\rm weakly \ in \ } [L^2(\omega)]^N \ , \end{array} \right.$$

for ϵ in E'. Furthermore, $-div \eta = g$ in ω .

For any f in $H^{-1}(\omega)$, u^{ϵ} defined as the solution of

$$\begin{cases} -div \left(A^{\epsilon} grad \, u^{\epsilon}\right) = f \quad \text{ in } \omega, \\ u^{\epsilon} \in H_0^1(\omega) \;, \end{cases}$$

for $\epsilon \in E$ and $\epsilon = 0$, is such that

$$\left\{ \begin{array}{ll} u^\epsilon \rightharpoonup u^0 & {\rm weakly \ in \ } H^1_0(\omega), \\ \\ A^\epsilon grad \, u^\epsilon \rightharpoonup A^0 grad \, u^0 & {\rm weakly \ in \ } [L^2(\omega)]^N \ , \end{array} \right.$$

for $\epsilon \in E$, because $A^{\epsilon}H$ -converges to A^{0} for $\epsilon \in E$.

Application of Lemma 2 yields

$$(A^0 grad u^0, grad v) = (grad u^0, \eta)$$
 a.e. in ω .

As f spans $H^{-1}(\omega)$, u^0 spans $H^1_0(\omega)$; thus, if $\omega_1 \subset \subset \omega$, $\operatorname{grad} u^0$ can be taken to be any $\lambda \in \mathbf{R}^N$ on ω_1 and we obtain

$$(A^0\lambda, \operatorname{grad} v) = (\lambda, \eta)$$
 a.e. in ω_1 and for any $\lambda \in \mathbf{R}^N$,

which implies that

$$\eta = {}^{t}A^{0} \operatorname{grad} v$$
 a.e. in ω .

Since $-div \eta = g$, we conclude that $v = v^0$ and $\eta = {}^t A^0 grad v^0$.

Since ${}^{t}A^{0}$ is unique, v^{0} is unique and the whole sequence $\epsilon \in E$ (and not only the subsequence $\epsilon \in E'$) is found to converge.

Theorem 1 Assume that $A^{\epsilon}, \epsilon \in E$, belongs to $M(\alpha, \beta, \Omega)$ and H-converges to $A^{0} \in M(\alpha', \beta', \Omega)$. Assume that

$$\left\{ \begin{array}{l} u^{\epsilon} \in H^{1}(\Omega) \ , \\ f^{\epsilon} \in H^{-1}(\Omega) \ , \\ -div \left(A^{\epsilon}grad \ u^{\epsilon}\right) = f^{\epsilon} \quad in \ \Omega \ , \\ u^{\epsilon} \rightarrow u^{0} \quad weakly \ in \ H^{1}(\Omega) \ , \\ f^{\epsilon} \rightarrow f^{0} \quad strongly \ in \ H^{-1}(\Omega) \ , \end{array} \right.$$

for $\epsilon \in E$. Then

$$A^{\epsilon} grad \, u^{\epsilon} \rightharpoonup A^{0} grad \, u^{0} \qquad weakly \, \, in \, \, [L^{2}(\Omega)]^{N} \, ,$$

 $(A^{\epsilon} grad u^{\epsilon}, grad u^{\epsilon}) \rightarrow (A^{0} grad u^{0}, grad u^{0}) \quad weakly \cdot * in \mathcal{D}'(\Omega).$

The proof of Theorem 1 is analogous to that of Proposition 2: it merely uses Proposition 2 and Lemmata 1 and 2.

It can be further proved, with the help of Meyers' regularity theorem (see Meyers [3]), that the energy $(A^{\epsilon}grad\,u^{\epsilon}, grad\,u^{\epsilon})$ actually converges weakly in $L^{1}_{loc}(\Omega)$.

9 Sequential Compactness of $M(\alpha, \beta, \Omega)$ for the Topology Induced by *H*-convergence

The notion of *H*-convergence finds its raison d'être in the following theorem.

Theorem 2 Let $A^{\epsilon}, \epsilon \in E$ belong to $M(\alpha, \beta, \Omega)$. There exists a subsequence E' of E and a matrix A^0 in $M(\alpha, \frac{\beta^2}{\alpha}, \Omega)$ such that A^{ϵ} H-converges to A^0 for $\epsilon \in E'$.

Proof:

The proof of Theorem 2 consists of the following steps.

Step 1:

Proposition 3 Let F and G be two Banach spaces, with F separable and G reflexive. Let $T^{\epsilon}, \epsilon \in E$ be elements of $\mathcal{L}(F,G)$ satisfying

 $||| T^{\epsilon} |||_{\mathcal{L}} \leq C .$

Then there exist a subsequence E' of E and an element T^0 of $\mathcal{L}(F,G)$ such that, for any element f of F, $T^{\epsilon}f \rightarrow T^0f$ weakly in $G, \epsilon \in E'$.

Proof:

Take X to be a countable dense subset of F. A diagonal process ensures the existence of a subsequence E' of E such that $T^{\epsilon}x$ has a weak limit in G denoted by $T^{0}x$ for $\epsilon \in E'$ and $x \in X$.

Fix f in F and g' in G' and approximate f by elements $x \in X$. This allows one to prove that $\langle T^{\epsilon}f, g' \rangle_{G,G'}$ is a Cauchy sequence for $\epsilon \in E'$. Denote the corresponding limit by $\langle T^0f, g' \rangle_{G,G'}$; then T^0 is linear and bounded. Specifically,

$$||T^0f||_G \leq \liminf_{\epsilon \in E'} ||T^{\epsilon}f||_G \leq C ||f||_F.$$

Step 2:

Proposition 4 Let V be a reflexive separable Banach space and $T^{\epsilon}, \epsilon \in E$ be elements of $\mathcal{L}(V, V')$ such that

$$\left\{\begin{array}{cccc} \| \mid T^{\epsilon} \parallel \mid_{\mathcal{L}} & \leq & \beta \ , \\ \\ < T^{\epsilon}v, v >_{V',V} & \geq & \alpha \parallel v \parallel_{V}^{2} \ , \ v \in V \end{array}\right.$$

Then there exist a subsequence E' of E and an element T^0 in $\mathcal{L}(V,V')$ such that

$$\begin{cases} & ||| T^0 |||_{\mathcal{L}} \leq \beta^2 / \alpha , \\ \\ & < T^0 v, v >_{V',V} \geq \alpha || v ||_V^2 , v \in V, \end{cases}$$

which satisfy for any f in V',

$$(T^{\epsilon})^{-1}f \rightharpoonup (T^{0})^{-1}f \quad weakly \ in \ V, \epsilon \in E'.$$

32

Proof:

By virtue of Lax-Milgram's lemma, T^{ϵ} has an inverse $(T^{\epsilon})^{-1}$ that satisfies $\|| (T^{\epsilon})^{-1} \||_{\mathcal{L}} \leq 1/\alpha$. Application of Proposition 3 yields a subsequence E' of E and an element S in $\mathcal{L}(V', V)$ such that, for any element f of V',

$$(T^{\epsilon})^{-1}f \rightarrow Sf$$
 weakly in $V, \epsilon \in E'$

Since

$$\langle (T^{\epsilon})^{-1}f, f \rangle_{V,V'} = \langle (T^{\epsilon})^{-1}f, T^{\epsilon}(T^{\epsilon})^{-1}f \rangle_{V,V'}$$

$$\geq \alpha \parallel (T^{\epsilon})^{-1}f \parallel_{V}^{2} \geq \frac{\alpha}{\beta^{2}} \parallel |T^{\epsilon} \parallel|_{\mathcal{L}}^{2} \parallel (T^{\epsilon})^{-1}f \parallel_{V}^{2} \geq \frac{\alpha}{\beta^{2}} \parallel f \parallel_{V'}^{2},$$

we obtain

$$< Sf, f >_{V,V'} \ge rac{lpha}{eta^2} \parallel f \parallel^2_{V'}$$
 .

Thus S, being coercive, is invertible. Denote by $T^0 \in \mathcal{L}(V, V')$ its inverse. It satisfies, for any element v of V,

$$\frac{\alpha}{\beta^2} \parallel T^0 v \parallel_V^2 \le \langle ST^0 v, T^0 v \rangle_{V,V'} \le \parallel v \parallel_V \parallel T^0 v \parallel_{V'}.$$

Hence $\| \| T^0 \| \|_{\mathcal{L}} \leq \beta^2 / \alpha$.

Since

$$\begin{aligned} \alpha \parallel (T^{\epsilon})^{-1} f \parallel_{V}^{2} &\leq < T^{\epsilon} (T^{\epsilon})^{-1} f, (T^{\epsilon})^{-1} f >_{V',V} \\ &= < f, (T^{\epsilon})^{-1} f >_{V',V} , \end{aligned}$$

the sequential weak lower semicontinuity of $\| \|_V$ implies

$$\alpha \parallel Sf \parallel^2_V \leq \langle f, Sf \rangle_{V',V},$$

and the choice of $f = Tv^0, v \in V$, finally yields

$$\alpha \parallel v \parallel_V^2 \le \langle T^0 v, v \rangle_{V',V}$$
.

Step 3:

For the remainder of the proof of Theorem 2 it will be assumed that Ω is bounded. If such was not the case the argument would be applied to $\Omega \cap \{x \in \mathbf{R}^N : |x| \leq p\}$ with $p \in \mathbf{Z}^+$ and a diagonalization argument would permit us to conclude.

We propose to manufacture a sequence of test functions to be later inserted into Lemma 2. To this effect a bounded open set Ω' of \mathbf{R}^N with

 $\Omega\subset \Omega'$ is considered. We define B^ϵ to be an element of $M(\alpha,\beta,\Omega')$ such that

$$B^{\epsilon} = {}^{t}A^{\epsilon}$$
 in Ω .

(Take for example $B^{\epsilon} = \alpha I$ in $\Omega' \setminus \Omega$.)

 \mathbf{Set}

$$\mathcal{B}^{\epsilon} = -div \left(B^{\epsilon}grad \right) \in \mathcal{L}(H^{1}_{0}(\Omega'); H^{-1}(\Omega'))$$

Proposition 4 implies the existence of a subsequence E' of E and of an element $\mathcal{B}^0 \in \mathcal{L}(H^1_0(\Omega'); H^{-1}(\Omega'))$ such that, for any element g in $H^{-1}(\Omega')$,

$$(\mathcal{B}^{\epsilon})^{-1}g \rightharpoonup (\mathcal{B}^{0})^{-1}g$$
 weakly in $H^{1}_{0}(\Omega),$

when $\epsilon \in E'$. Let φ be an element of $C_0^{\infty}(\Omega')$ such that $\varphi = 1$ on Ω and, for any $i \in \{1, \ldots, N\}$, set

$$g_i = \mathcal{B}^0(x_i\varphi(x)) \in H^{-1}(\Omega').$$

Define $v_i^{\epsilon}, \epsilon \in E', i \in \{1, \dots, N\}$, as

$$v_i^\epsilon = (\mathcal{B}^\epsilon)^{-1} g_i$$

The restriction of v_i^{ϵ} to Ω belongs to $H^1(\Omega)$ and satisfies

$$\left\{ \begin{array}{ll} v_i^\epsilon \rightharpoonup x_i & {\rm weakly \ in \ } H^1(\Omega) \ , \\ \\ -div \left({}^t A^\epsilon grad \, v_i^\epsilon \right) = g_i & {\rm in \ } \Omega \end{array} \right.$$

At the possible expense of the extraction of a subsequence E'' of E', we are at liberty to further assume that

$${}^{t}A^{\epsilon}grad \, v_{i}^{\epsilon} \rightharpoonup \eta_{i} \quad \text{weakly in } [L^{2}(\Omega)]^{N} ,$$

when $\epsilon \in E'', i \in \{1, \ldots, N\}$.

Note that $-\operatorname{div} \eta_i = g_i$ in Ω and that the functions $v_i^{\epsilon}, \epsilon \in E''$ satisfy equation (7) in Lemma 2 with $v^0 = x_i$.

We now define a matrix $A^0 \in [L^2(\Omega)]^{N^2}$ by

$$(A^0)_{ij} = (\eta_i)_j \in L^2(\Omega), \quad i, j \in \{1, \dots, N\}.$$

The matrices $A^{\epsilon}, \epsilon \in E''$, are shown to *H*-converge to A^0 .

Step 4:

Let $\omega \subset \subset \Omega$. Define the isomorphism \mathcal{A}^{ϵ} by

$$\mathcal{A}^{\epsilon} = -div \left(A^{\epsilon}grad
ight) \in \mathcal{L}(H_{0}^{1}(\omega); H^{-1}(\omega)),$$

and set

$$\mathcal{C}^{\epsilon} = A^{\epsilon} grad\left((\mathcal{A}^{\epsilon})^{-1}\right) \in \mathcal{L}(H^{-1}(\omega); [L^{2}(\omega)]^{N}).$$

Then, for any element f in $H^{-1}(\omega)$,

$$\| \mathcal{C}^{\epsilon} f \|_{[L^{2}(\omega)]^{N}} \leq \beta \| (\mathcal{A}^{\epsilon})^{-1} f \|_{H^{1}_{0}(\omega)} \leq \frac{\beta}{\alpha} \| f \|_{H^{-1}(\omega)}.$$

Direct applications of Proposition 3 to \mathcal{C}^{ϵ} and of Proposition 4 to \mathcal{A}^{ϵ} , imply the existence of a subsequence E_{ω} of $\mathcal{C}^{0} \in \mathcal{L}(H^{-1}(\omega); [L^{2}(\omega)]^{N})$, and of an isomorphism $\mathcal{A}^{0} \in \mathcal{L}(H_{0}^{1}(\omega); H^{-1}(\omega))$, such that, for any element f in $H^{-1}(\omega)$,

$$\left\{ egin{array}{ll} (\mathcal{A}^{\epsilon})^{-1}f
ightarrow (\mathcal{A}^{0})^{-1}f & ext{weakly in } H^{1}_{0}(\omega) \ \mathcal{C}^{\epsilon}f
ightarrow \mathcal{C}^{0}f & ext{weakly in } [L^{2}(\omega)]^{N}. \end{array}
ight.$$

Note that E_{ω} depends upon the choice of ω .

The sequence $u^{\epsilon} = (\mathcal{A}^{\epsilon})^{-1}f$, $\epsilon \in E''$, satisfies

$$\begin{cases} u^{\epsilon} \rightharpoonup u^{0} = (\mathcal{A}^{0})^{-1} f & \text{weakly in } H_{0}^{1}(\omega), \\ \\ A^{\epsilon} grad \, u^{\epsilon} \rightharpoonup \mathcal{C}^{0} f = \xi^{0} & \text{weakly in } [L^{2}(\omega)]^{N}, \\ \\ -div \, (A^{\epsilon} grad \, u^{\epsilon}) = f & \text{in } \omega, \end{cases}$$

which is precisely equation (6) of Lemma 2.

Thus application of Lemma 2 to u^{ϵ} and v_i^{ϵ} yields, for $i \in \{1, \ldots, N\}$,

$$(\xi^0, \operatorname{grad} x_i) = (\operatorname{grad} u^0, \eta_i)$$
 a.e. in ω ,

which, in view of the definition of A^0 , is precisely

$$\mathcal{C}^0 f = \xi^0 = A^0 grad \, u^0 \quad ext{a.e. in } \omega.$$

Step 5:

The matrix A^0 , which is by definition an element of $[L^2(\omega)]^{N^2}$, is such that $A^0 \operatorname{grad} u^0$ belongs to $[L^2(\omega)]^N$ for any u^0 in $H^1_0(\omega)$. We prove that A^0 belongs to $M(\alpha, \frac{\beta^2}{\alpha}, \omega)$. Indeed, application of Lemma 1 to $A^{\epsilon} \operatorname{grad} u^{\epsilon}$ and u^{ϵ} , $\epsilon \in E_{\omega}$ yields

$$(A^{\epsilon} \operatorname{grad} u^{\epsilon}, \operatorname{grad} u^{\epsilon}) \longrightarrow (A^{0} \operatorname{grad} u^{0}, \operatorname{grad} u^{0}) \quad \text{weakly-* in } \mathcal{D}'(\omega).$$

Let φ be an arbitrary nonnegative element of $\mathcal{C}_0^{\infty}(\omega)$. The inequality

$$\int_{\omega} \varphi \left(A^{\epsilon} grad \, u^{\epsilon}, grad \, u^{\epsilon} \right) dx \geq \alpha \int_{\omega} \varphi \mid grad \, u^{\epsilon} \mid^{2} dx$$

implies

$$\int_{\omega} arphi \left(A^0 grad \, u^0, grad \, u^0
ight) dx \geq lpha \int_{\omega} arphi \mid grad \, u^0 \mid^2 dx.$$

Since the preceding result holds true for any u^0 in $H_0^1(\omega)$, taking $u^0(x) = (\lambda, x)$ on the support of φ yields

$$(A^0(x)\lambda,\lambda) \ge lpha \mid \lambda \mid^2, \quad \lambda \in \mathbf{R}^N \ , \ ext{a.e.} \ x \in \ \omega$$

On the other hand, for any $\mu \in \mathbf{R}^N$ (see the beginning of the proof of Proposition 4),

$$((A^{\epsilon})^{-1}(x)\mu,\mu)\geq rac{lpha}{eta^2}\mid\mu\mid^2, \quad ext{a.e.} \ x\in \ \omega.$$

Let φ be an arbitrary nonnegative element of $\mathcal{C}_0^{\infty}(\omega)$. The inequality

$$\int_{\omega} \varphi \left(\operatorname{grad} u^{\epsilon}, A^{\epsilon} \operatorname{grad} u^{\epsilon} \right) dx \geq \frac{\alpha}{\beta^2} \int_{\omega} \varphi \mid A^{\epsilon} \operatorname{grad} u^{\epsilon} \mid^2 dx$$

implies

$$\int_{\omega} \varphi\left(\operatorname{grad} u^0, A^0 \operatorname{grad} u^0\right) dx \geq \frac{\alpha}{\beta^2} \int_{\omega} \varphi \mid A^0 \operatorname{grad} u^0 \mid^2 dx.$$

Since the preceding result holds true for any u^0 in $H_0^1(\omega)$, taking $u^0(x) = (\lambda, x)$ on the support of φ yields

$$(\lambda,A^0(x)\lambda)\geq rac{lpha}{eta^2}\mid A^0(x)\lambda\mid^2, \quad \lambda\in {f R}^N \ , \ {
m a.e.} \ x\in \ \omega,$$

and thus

$$\mid A^0(x)\lambda\mid\leq \frac{\beta^2}{\alpha}\mid\lambda\mid.$$
 We have proved that A^0 belongs to
 $M(\alpha,\frac{\beta^2}{\alpha},\omega).$

Step 6:

Because $A^0 \in M(\alpha, \frac{\beta^2}{\alpha}, \omega)$, the limit u^0 of $u^{\epsilon}, \epsilon \in E_{\omega}$ is uniquely defined, independently of E_{ω} , through

$$\left\{ \begin{array}{ll} -div\,(A^0grad\,u^0)=f & \mbox{ in }\omega\;,\\ \\ u^0\in H^1_0(\omega). \end{array} \right.$$

Thus there is no need to extract E_{ω} from E'' and the sequences u^{ϵ} and $A^{\epsilon}grad\,u^{\epsilon}$ converge for $\epsilon \in E''$. But E'' is independent of ω . Thus $A^{\epsilon}, \epsilon \in E''$, H-converges to A^{0} .

H-Convergence

10 Definition of the Corrector Matrix P^{ϵ}

Let $A^{\epsilon}, \epsilon \in E$, be a sequence of elements of $M(\alpha, \beta, \Omega)$ that *H*-converges to $A^{0} \in M(\alpha, \beta', \Omega)$. Consider $\omega \subset \subset \Omega, \lambda \in \mathbf{R}^{N}$, and $\epsilon \in E$ and define w_{λ}^{ϵ} such that

$$\begin{cases} w_{\lambda}^{\epsilon} \in H^{1}(\omega), \\ w_{\lambda}^{\epsilon} \to (\lambda, x) \quad \text{weakly in } H^{1}(\omega), \\ -div \left(A^{\epsilon} \operatorname{grad} w_{\lambda}^{\epsilon}\right) \to -div \left(A^{0} \lambda\right) \quad \text{strongly in } H^{-1}(\omega). \end{cases}$$
(9)

The existence of w_{λ}^{ϵ} is readily asserted upon solving

$$\begin{cases} -div \left(A^{\epsilon} \operatorname{grad} w_{\lambda}^{\epsilon}\right) = -div \left(A^{0} \operatorname{grad} \left((\lambda, x)\varphi(x)\right)\right) & \text{ in } \omega_{1}, \\ \\ w_{\lambda}^{\epsilon} \in H_{0}^{1}(\omega_{1}), \end{cases}$$

with $\omega \subset \omega_1 \subset \Omega$ and φ an element of $\mathcal{C}_0^{\infty}(\omega_1)$ such that $\varphi = 1$ on ω .

Definition 2 Let $A^{\epsilon}, \epsilon \in E$ be a sequence of elements of $M(\alpha, \beta, \Omega)$ that *H*-converges to $A^{0} \in M(\alpha, \beta', \Omega)$. The corrector matrix $P^{\epsilon} \in [L^{2}(\omega)]^{N^{2}}$ is defined by

$$P^{\epsilon}\lambda = \operatorname{grad} w_{\lambda}^{\epsilon}, \quad \lambda \in \mathbf{R}^{N}, \quad \epsilon \in E,$$

$$(10)$$

where the sequence w_{λ}^{ϵ} satisfies (9).

Remarks

1. It can easily be shown from equation (9) that the matrix P^{ϵ} is "unique" to the extent that if P^{ϵ} and \tilde{P}^{ϵ} , $\epsilon \in E$, are two such sequences, then

$$P^{\epsilon} - \tilde{P}^{\epsilon} \to 0 \quad \text{strongly in } [L^2_{loc}(\omega)]^{N^2}.$$

- 2. The sequence P^{ϵ} is bounded in $[L^{2}(\omega)]^{N^{2}}$ independently of ϵ . Bounds for this sequence in $[L^{q}(\omega)]^{N^{2}}$, q > 2 can be achieved through application of Meyers' regularity result (see Meyers [3]).
- 3. In the case of layers where $A^{\epsilon}(x) = A^{\epsilon}(x_1)$ (see Step 4), the functions w^{ϵ}_{λ} are of the form

$$w^\epsilon_\lambda(x) = (\lambda, x) + z^\epsilon_\lambda(x_1),$$

and it is easily proved that P^{ϵ} can be defined by

$$\begin{cases}
P_{11}^{\epsilon} = \frac{A_{11}^{0}}{A_{11}^{\epsilon}}, \\
P_{1j}^{\epsilon} = \frac{A_{1j}^{0} - A_{1j}^{\epsilon}}{A_{11}^{\epsilon}}, \quad j > 1, \\
P_{ii}^{\epsilon} = 1, \quad i > 1, \\
P_{ij}^{\epsilon} = 0, \quad i, j > 1, \quad i \neq j.
\end{cases}$$
(11)

4. Note that the previous remark immediately demonstrates that a sequence Q^{ϵ} associated with ${}^{t}A^{\epsilon}$ through Definition 2 does not generally coincide with ${}^{t}P^{\epsilon}$. Indeed, in the case of layers, both P^{ϵ} and Q^{ϵ} given by (11) have nonzero terms only on the diagonal and in the first line.

Proposition 5 Let P^{ϵ} be the sequence of corrector matrices defined through Definition 2. Then, as $\epsilon \in E$,

$$\begin{array}{rcl} P^{\epsilon} & \longrightarrow & I & weakly \ in \ [L^{2}(\omega)]^{N^{2}}, \\ \\ A^{\epsilon}P^{\epsilon} & \longrightarrow & A^{0} & weakly \ in \ [L^{2}(\omega)]^{N^{2}}, \end{array}$$

$${}^{t}P^{\epsilon}A^{\epsilon}P^{\epsilon} & \longrightarrow & A^{0} & weakly \ {}^{*} \ in \ [\mathcal{D}'(\omega)]^{N^{2}}. \end{array}$$

Proof:

The sequence P^{ϵ} is bounded in $[L^2(\omega)]^{N^2}$. If φ is an arbitrary element of $[\mathcal{C}_0^{\infty}(\omega)]^N$, that is, if

$$\varphi = \sum_{i=1}^{N} \varphi_i e_i, \quad \varphi_i \in \mathcal{C}_0^{\infty}(\omega),$$

one has

$$\begin{cases} \int_{\omega} P^{\epsilon} \varphi dx = \int_{\omega} \sum_{i=1}^{N} \varphi_i P^{\epsilon} e_i \, dx = \int_{\omega} \sum_{i=1}^{N} \varphi_i \operatorname{grad} w_{e_i}^{\epsilon} \, dx \\ \\ \rightarrow \int_{\omega} \sum_{i=1}^{N} \varphi_i e_i dx = \int_{\omega} \varphi \, dx. \end{cases}$$

Thus P^{ϵ} converges weakly to I in $[L^{2}(\omega)]^{N}$. The remaining statements of convergence are obtained in a similar way with the help of Theorem 1 and Lemma 1.

11 Strong Approximation of $grad u^{\epsilon}$. Correctors

Theorem 3 Assume that $A^{\epsilon}, \epsilon \in E$ belongs to $M(\alpha, \beta, \Omega)$ and H-converges to $A^{0} \in M(\alpha, \beta', \Omega)$. Assume that

$$\begin{cases} u^{\epsilon} \in H^{1}(\omega), \\ f^{\epsilon} \in H^{-1}(\omega), \\ -div \left(A^{\epsilon} \operatorname{grad} u^{\epsilon}\right) = f^{\epsilon} \quad in \ \omega, \\ u^{\epsilon} \rightarrow u^{0} \quad weakly \ in \ H^{1}(\omega), \\ f^{\epsilon} \rightarrow f^{0} \quad strongly \ in \ H^{-1}(\omega), \end{cases}$$
(12)

where ω is such that $\omega \subset \subset \Omega$. Let P^{ϵ} be the corrector matrix introduced in Definition 2. Then one has for $\epsilon \in E$:

$$\begin{cases} grad u^{\epsilon} = P^{\epsilon} grad u^{0} + z^{\epsilon}, \\ z^{\epsilon} \to 0 \quad strongly \ in \ [L^{1}_{loc}(\omega)]^{N}. \end{cases}$$
(13)

Further, if

$$\begin{cases} P^{\epsilon} \in [L^{q}(\omega)]^{N^{2}}, \quad \|P^{\epsilon}\|_{[L^{q}(\omega)]^{N^{2}}} \leq C, \quad 2 \leq q \leq +\infty, \\ grad \ u^{0} \in [L^{p}(\omega)]^{N}, \quad 2 \leq p < +\infty, \end{cases}$$
(14)

then

$$z^{\epsilon} \to 0 \quad strongly \ in \ [L^{r}_{loc}(\omega)]^{N},$$
 (15)

with

$$\frac{1}{r}=max(\frac{1}{2},\frac{1}{p}+\frac{1}{q}).$$

Finally, if

$$\int_{\omega} (A^{\epsilon} \operatorname{grad} u^{\epsilon}, \operatorname{grad} u^{\epsilon}) \, dx \to \int_{\omega} (A^{0} \operatorname{grad} u^{0}, \operatorname{grad} u^{0}) \, dx, \qquad (16)$$

then

$$z^{\epsilon} \to 0 \quad strongly \ in \ [L^{r}(\omega)]^{N}.$$
 (17)

Remarks

- 1. Theorem 3 provides a "good" approximation for $grad u^{\epsilon}$ in the strong topology of L^{1}_{loc} , L^{r}_{loc} , or even L^{r} . Such an approximation is a useful tool in the study of the limit of non linear functions of $grad u^{\epsilon}$.
- 2. When u^0 is more regular, that is, when $u^0 \in H^2(\omega)$, Theorem 3 immediately implies that

$$u^{\epsilon} = u^{0} + \sum_{i=1}^{N} (w^{\epsilon}_{e_{i}} - x_{i}) \frac{\partial u^{0}}{\partial x_{i}} + r^{\epsilon} \quad \text{with} \quad r^{\epsilon} \to 0 \quad \text{strongly in } W^{1,1}_{loc}(\omega).$$

The term $\sum_{i=1}^{N} (w_{e_i}^{\epsilon} - x_i) \frac{\partial u^0}{\partial x_i}$ may be seen as a correcting term. In the case where $A^{\epsilon}(x) = A(x/\epsilon)$ with A a periodic matrix, it is precisely the term of order ϵ in the asymptotic expansion for u^{ϵ} (see Bensoussan et al. [1]).

- 3. In the absence of any hypothesis on the behavior of u^{ϵ} near the boundary of ω (note the absence of any kind of boundary condition on u^{ϵ} in (12)) the estimates (13) and (17) on $grad u^{\epsilon} - P^{\epsilon}grad u^{0}$ are only local estimates. Assumption (16) alleviates this latter obstacle; it is met in particular when u^{ϵ} is the solution of an homogeneous Dirichlet boundary value problem.
- 4. An approximation of $grad u^{\epsilon}$ by $P^{\epsilon}grad u$ in the strong topology of $[L^2_{loc}(\omega)]^N$ is obtained as soon as the corrector matrix P^{ϵ} is bounded in $[L^q(\omega)]^{N^2}$ with q large enough. Since $grad u^{\epsilon}$ is bounded in $[L^2(\omega)]^N$, such an approximation may be deemed "natural." It is unfortunately not available in general. The most pleasant setting is, of course, the case where $q = +\infty$.
- 5. The case where $p = +\infty$ in (14) also results in the statements (15) and (17), but its proof requires Meyers' regularity theorem to be done.

Proof of Theorem 3:

The proof consists of two steps.

Step 1:

Proposition 6 In the setting of Theorem 3, the following convergence holds true for any φ in $[\mathcal{C}_0^{\infty}(\omega)]^N$, ϕ in $\mathcal{C}_0^{\infty}(\omega)$ and $\epsilon \in E$.

$$\begin{cases} \int_{\omega} \phi \left(A^{\epsilon} (\operatorname{grad} u^{\epsilon} - P^{\epsilon} \varphi), \, (\operatorname{grad} u^{\epsilon} - P^{\epsilon} \, \varphi) \right) dx \\ \rightarrow \int_{\omega} \phi \left(A^{0} (\operatorname{grad} u^{0} - \varphi), \, (\operatorname{grad} u^{0} - \varphi) \right) dx. \end{cases}$$
(18)

Proof:

Set
$$\varphi = \sum_{i=1}^{N} \varphi_{i}e_{i}, \ \varphi_{i} \in C_{0}^{\infty}(\omega)$$
. Then

$$\int_{\omega} \phi \left(A^{\epsilon}(\operatorname{grad} u^{\epsilon} - P^{\epsilon}\varphi), \ (\operatorname{grad} u^{\epsilon} - P^{\epsilon}\varphi)\right) dx$$

$$= \int_{\omega} \phi \left(A^{\epsilon}\operatorname{grad} u^{\epsilon}, \ \operatorname{grad} u^{\epsilon}\right) dx + \sum_{j=1}^{N} \int_{\omega} \phi \left(A^{\epsilon}\operatorname{grad} u^{\epsilon}, P^{\epsilon}e_{j}\right) \varphi_{j} dx$$

$$+ \sum_{i=1}^{N} \int_{\omega} \phi \left(A^{\epsilon}P^{\epsilon}e_{i}, \ \operatorname{grad} u^{\epsilon}\right) \varphi_{i} dx + \sum_{i,j=1}^{N} \int_{\omega} \phi \left(A^{\epsilon}P^{\epsilon}e_{i}, P^{\epsilon}e_{j}\right) \varphi_{i} \varphi_{j} dx.$$

Each term in the preceding equality passes to the limit, with the help of Theorem 1 for the first one, Lemma 1 together with the definition of P^{ϵ} for the second and third ones, and Proposition 5 for the last one. This proves (18).

Whenever assumption (16) is satisfied, the choice $\phi = 1$ is licit because the first term passes to the limit as well as the other terms that contain at least one φ_i which has compact support.

Step 2:

If u^0 belongs to $C_0^{\infty}(\omega)$, the first step permits us to conclude upon setting $\varphi = \operatorname{grad} u^0$. Otherwise an approximation process is required. The regularity hypothesis (14) is assumed with no loss of generality since (13) is recovered from (15) if p = q = 2.

Let δ be an arbitrary (small) positive number. Choose $\varphi \in [\mathcal{C}_0^{\infty}(\omega)]^N$ such that

$$\|\operatorname{grad} u^0 - \varphi\|_{[L^p(\omega)]^N} \le \delta,$$

which is possible since $p < +\infty$. Then

$$\|P^{\epsilon} \operatorname{grad} u^{0} - P^{\epsilon} \varphi\|_{[L^{s}(\omega)]^{N}} \leq C\delta, \quad \text{ if } \ \frac{1}{s} = \frac{1}{p} + \frac{1}{q}.$$

Take $\omega_1 \subset \subset \omega$ and $\phi \in \mathcal{C}_0^{\infty}(\omega)$, $\phi = 1$ on ω_1 , $0 \leq \phi \leq 1$ in ω . Proposition 6 then yields

$$\begin{split} \lim_{\epsilon \in E} \sup & \alpha \| \operatorname{grad} u^{\epsilon} - P^{\epsilon} \varphi \|_{[L^{2}(\omega_{1})]^{N}}^{2} \\ \leq \limsup_{\epsilon \in E} \int_{\omega} \phi \left(A^{\epsilon} (\operatorname{grad} u^{\epsilon} - P^{\epsilon} \varphi), (\operatorname{grad} u^{\epsilon} - P^{\epsilon} \varphi) \right) dx \\ &= \int_{\omega} \phi \left(A^{0} (\operatorname{grad} u^{0} - \varphi), (\operatorname{grad} u^{0} - \varphi) \right) dx \\ &\leq \beta' \| \operatorname{grad} u^{0} - \varphi \|_{[L^{2}(\omega)]^{N}}^{2} \leq C \delta^{2}. \end{split}$$

The two results we have obtained imply that

$$z^{\epsilon} = \operatorname{grad} u^{\epsilon} - P^{\epsilon} \operatorname{grad} u = (\operatorname{grad} u^{\epsilon} - P^{\epsilon} \varphi) - (P^{\epsilon} \operatorname{grad} u^{0} - P^{\epsilon} \varphi)$$

satisfies

$$\limsup_{\epsilon \in E} \| z^{\epsilon} \|_{L^{r}[(\omega_{1})]^{N}} \leq C\delta,$$

with $r = \min(2, s)$. Letting δ tend to 0 yields (15).

When assumption (16) holds, the proof remains valid with the choice $\phi = 1$ and $\omega_1 = \omega$, and (17) is thus established.

We conclude with a straightforward application of Theorem 3.

Proposition 7 Consider, in the setting of Theorem 3, a sequence $a^{\epsilon}, \epsilon \in E$, with

$$\left\{ \begin{array}{ll} a^{\epsilon} \in [L^{\infty}(\omega)]^{N}, \quad \| \, a^{\epsilon} \, \|_{[L^{\infty}(\omega)]^{N}} \leq C, \\ \\ {}^{t}P^{\epsilon}a^{\epsilon} \rightharpoonup a^{0} \quad weakly \ in \ [L^{2}(\omega)]^{N}. \end{array} \right.$$

Then

$$(a^{\epsilon}, \operatorname{grad} u^{\epsilon}) \rightarrow (a^0, \operatorname{grad} u^0) \quad \text{weakly in } L^2(\omega).$$

The proof is immediate upon recalling (13). The same idea also permits, at the expense of a few technicalities, handling the case where u^{ϵ} converges weakly in $H^1(\Omega)$ and satisfies an equation of the type:

$$-div \left(A^{\epsilon} \operatorname{grad} u^{\epsilon} + b^{\epsilon} u^{\epsilon} + c^{\epsilon}\right) + \left(d^{\epsilon}, \operatorname{grad} u^{\epsilon}\right) + e^{\epsilon} u^{\epsilon} = f^{\epsilon} \quad \text{ in } \Omega.$$

References

- [1] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic methods in periodic structures, North-Holland, Amsterdam, 1978.
- [2] E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell' energia per operatori ellittici del secondo ordine, *Boll. UMI* 8 (1973), 391–411.
- [3] N. G. Meyers, An L^p-estimate for the gradient of solutions of second order elliptic equations, Ann. Sc. Norm. Sup. Pisa 17 (1963), 189– 206.
- [4] F. Murat, Compacité par compensation, Ann. Sc. Norm. Sup. Pisa 5 (1978), 489–507.
- [5] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche, Ann. Sc. Norm. Sup. Pisa 22 (1968), 571–597.

References Added at the Time of the Translation

- [6] F. Murat, "Compacité par compensation II," in: Proceedings of the international meeting on recent methods in non linear analysis (Rome, May 1978), E. De Giorgi, E. Magenes and U. Mosco, eds., Pitagora Editrice, Bologna, 1979, 245–256.
- [7] L. Tartar, "Compensated compactness and applications to partial differential equations.," in: Non linear analysis and mechanics, Heriot-Watt Symposium, Volume IV, R.J. Knops, ed., Research Notes in Mathematics, 39, Pitman, Boston, 1979, 136-212.